Solid-phase reactions of lead tetraacetate with tertiary cycloalkanols and pyridine

G. I. Nikishin, L. L. Sokova, and N. I. Kapustina*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: nika@ioc.ac.ru

The oxidation of organic compounds with lead tetraacetate is always performed in the liquid phase using solvents. For the first time, we performed solid-phase reactions of $Pb(OAc)_4$ without a solvent, which required the use of mechanical activation in a vibration mill. Under these conditions, the $Pb(OAc)_4$ —metal halide system transforms naphthalene into 1-halo- and 1,4-dihalonaphthalenes and C_5 — C_7 n-alkanols into esters. In the liquid phase, n-alkanols are oxidized by the same system by a different mechanism resulting in 4-haloalkanols.

Continuing this new direction in chemistry of Pb(OAc)₄, we found that oxidative processes in the solid phase involving Pb(OAc)₄ can occur without mechanical activation. Oxidative decyclization of cycloalkanol 2 and oxoalkylation of pyridines occur in the solid-phase composition formed after mixing of pyridine or 4-picoline (1a,b), 1-methylcycloalkanols (2a,b), Pb(OAc)₄, and benzoic or 2-chlorobenzoic acid.

Oxoalkylation of pyridine occurs at positions 2 and 4, and 4-picoline is oxoalkylated at position 2. The results of studies are presented in Table 1 along with the data obtained under traditional conditions using AcOH as the solvent (at $80~^{\circ}\text{C}$).

It follows from Table 1 that the solid-phase reaction has higher parameters as regards the conversion of

R

Me

OH

$$(CH_2)_n$$

Pb(OAc)₄—ArCOOH

20 °C

1a,b

2a,b

(CH₂)_n

Aa,b

1, 3: R = H (a, c), Me (b, d)

 $n = 1$ (2a, 3a, 3b, 4a),

 $n = 2$ (2b, 3c, 3d, 4b)

Ar = Ph or 2-CIC₆H₄

cycloalkanols 2 and the yield of oxoalkylation products 3 and 4 compared to a similar reaction in the liquid phase. However, the solid-phase state of the reacting system is not sufficient for the efficient reaction. Evidently, the chemical and structural matching of the reactants is necessary. This conclusion follows from a sharp decrease in the conversion of 1-methylcyclo-

Table 1. Solid-phase oxoalkylation of pyridines 1 by 1-methylcycloalkanols 2

Reactants		Acid	Conversion 2^a	Reaction products	
1	2		(%)	Ratio of 2- and 4-isomers (%)	Yield ^b (%)
a	a	PhCOOH	98	3a (78), 4a (22)	86/88
a	a	$AcOH^c$	75	3a (73), 4a (27)	50/67
b	a	PhCOOH	95	3b (100)	87/92
b	a	$AcOH^c$	67	3b (100)	35/52
a	b	2-ClC ₆ H ₄ COOH	83	3c (61), 4b (39)	74/89
a	b	$AcOH^{c}$	55	3c (71), 4b (29)	30/55
b	b	2-ClC ₆ H ₄ COOH	97	3d (100)	76/78
b	b	AcOH	49	3d (100)	28/57

^a Conversion of Pb(OAc)₄ is ~100%.

^b With respect to initial/converted 2.

^c Reactions in AcOH (80 °C, 2 h).⁵

pentanol **2b** in the oxoalkylation of compounds **1a** and **1b** when 2-chlorobenzoic acid is replaced by benzoic acid. In the case of 1-methylcyclobutanol **2a**, this replacement has no effect on the results.

A mixture of pyridine (or 4-picoline) (1a,b), 1-methylcycloalkanol (2a,b), Pb(OAc)₄, and PhCOOH (or 2-ClC₆H₄COOH) (molar ratio 4 : 1 : 2 : 4, 1-methylcycloalkanol 5 mmol) was thoroughly stirred in a weighing bottle for approximately 5 min, after which the reaction mixture became liquid and then solidified after 2-6 h. After the end of the reaction (~20 h, complete conversion of Ph(OAc)₄), a solvent (CHCl₃, ether) was added to the mixture, and the conversion of the starting compound 2 and the yield of the reaction products (3a-d, 4a,b) were determined by GLC using an internal standard. The reaction mixture was treated with 10% HCl and a saturated solution of Na₂CO₃, washed with water, dried with Na₂SO₄, and distilled to give products 3 and 4. The structure of products 3 and 4 was confirmed by 1H and ¹³C NMR and IR spectroscopy, and by comparison with authentic samples.⁵

This work was financially supported by the Russian Foundation for Basic Research (Project No. 00-03-

32831a) and the State Foundation for Support of Leading Scientific Schools (Grant 00-15-97328).

References

- Organic Synthesis by Oxidation with Metal Compounds, Eds. W. J. Mijs, De Jonge, and R. H. I. Cornelis, Plenum, New York, 1989, 758.
- G. I. Nikishin, L. L. Sokova, V. D. Makhaev, L. A. Petrova, A. V. Ignatenko, and N. I. Kapustina, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1391 [*Russ. Chem. Bull.*, 1998, 47, 1353 (Engl. Transl.)].
- N. I. Kapustina, L. L. Sokova, V. D. Makhaev, A. P. Borisov, and G. I. Nikishin. *Izv. Akad. Nauk, Ser. Khim.*, 2000, 1870 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1842].
- 4. N. I. Kapustina, A. V. Lisitsyn, and G. I. Nikishin, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1989, 98 [*Bull. Acad. Sci. USSR*, *Div. Chem. Sci.*, 1989, **38**, 86 (Engl. Transl.)].
- N. I. Kapustina, L. L. Sokova, A. V. Ignatenko, and G. I. Nikishin, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 1923 [Russ. Chem. Bull., 1993, 42, 1839 (Engl. Transl.)].

Received May 10, 2001